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In this paper, we propose a new combination of RZ coding and m-array quadrature amplitude modulation (mQAM) to 
improve the performance of an all-optical OFDM system.  Numerical simulation is used to evaluate the performance of the 
proposed all-optical OFDM system, which uses coupler-based inverse fast Fourier transform/fast Fourier transform without 
any nonlinear compensation. The system employs 29 subcarriers where each subcarrier is modulated with a symbol rate of 
25Gsymbol/s. The results show that the nonlinear phase noise due to fiber nonlinearity is mitigated when the RZ-4QAM and 
RZ-16QAM format is employed. At the transmission distance of 550km, the error vector magnitude (EVM) reduces from 
12.7% to 10.7% when the RZ-4QAM format is adopted instead of 4QAM. The required optical signal-to-noise ratios 
(OSNRs) to achieve a BER of 10−5 are reduced by about 1.9dB and 5.8dB when adopting the RZ-4QAM and RZ-16QAM all 
optical OFDM systems, as compared to the 4QAM and 16QAM all-optical OFDM systems. 
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1. Introduction  
 
The high bit-rate communication systems have been 

extensively investigated due to rapid development of 
internet services. The all-optical orthogonal frequency 
division multiplexing (OFDM) communication system has 
been proposed to cater the increasing demand for 
information transfer [1]. Although, this system succeeds in 
transmitting data at a high bit rate, it suffers from fiber 
nonlinearity impairments. Due to these nonlinear effects 
such as self-phase modulation (SPM), cross-phase 
modulation (XPM) and four-wave mixing, the 
transmission distance of the optical OFDM systems is 
limited [2-4]. One of the conventional techniques used for 
transmitting data over long distance is by employing a 
multi-span fiber where each span has one optical amplifier 
[5]. However, the amplifier adds additional noise which 
interacts with fiber nonlinear effects that causes random 
nonlinear phase noise [6].  

A combination of return to zero (RZ) format  with 
phase modulation  formats (such as return to zero 
differential binary phase shift keying (RZ-DBPSK) or 
return to zero differential quadrature phase shift keying 
(RZ-DQPSK)  modulation format) is reported to be more 
tolerant to fiber nonlinear effects in both single channel 
and WDM transmission systems [7-9]. RZ-DQPSK has 
also been proposed as an efficient modulation scheme in 
the presence of SPM and dispersion [10]. It is well-known 
that non-return to zero (NRZ) format is more adversely 
affected by nonlinearities whereas RZ format is more 

affected by dispersion [11].  In order to increase the 
spectral efficiency of an optical OFDM system, a high 
order modulation formats is normally proposed[12]. 
However, optical OFDM systems that employ m-array 
Quadrature Amplitude Modulation (mQAM) are greatly 
affected by fiber nonlinearity due to phase noise that 
creates a Phase Rotate Term (PRT) on each subcarrier. 
The PRT leads to the destruction of the orthogonality of 
subcarriers [13-15]. The nonlinear phase noise is mainly 
governed by subcarrier power, transmission length, 
number of amplifiers and number of subcarriers [3].  

 In this paper, we propose a new combination between 
RZ coding format and 4QAM and 16QAM modulation 
formats in all-optical OFDM system for improving the 
system performance.  At transmitter side, the conversion 
from mQAM to RZ-mQAM formats is optically realized 
by using a single MZM after mQAM modulator for each 
subcarrier.  The MZM is driven by sinusoidal waveform. 
At the receiver side, the conversion from RZ-mQAM to 
mQAM utilizes a delay interferometer (DI) with delay 
time equal to half symbol period. To keep the time slot for 
optimum gating at normal frequency, RZ-mQAM is 
converted to mQAM before the sampling process. The 
effectiveness of RZ-4QAM and RZ-16QAM in all-optical 
OFDM systems is successfully demonstrated by numerical 
simulation. The impact of subcarrier peak power and fiber 
length on EVM is also studied. Our results reveal that 
significant improvements on the transmission performance 
of the all-optical OFDM system are realized by adopting 
RZ-4QAM and RZ-16QAM.  
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